Kamis, 16 April 2015

Komputasi Kuantum

Komputasi Kuantum

Komputer kuantum adalah alat hitung yang menggunakan sebuah fenomena mekanika kuantum, misalnya superposisi dan keterkaitan, untuk melakukan operasi data. Dalam komputasi klasik, jumlah data dihitung dengan bit; dalam komputer kuantum, hal ini dilakukan dengan qubit. Prinsip dasar komputer kuantum adalah bahwa sifat kuantum dari partikel dapat digunakan untuk mewakili data dan struktur data, dan bahwa mekanika kuantum dapat digunakan untuk melakukan operasi dengan data ini. Dalam hal ini untuk mengembangkan komputer dengan sistem kuantum diperlukan suatu logika baru yang sesuai dengan prinsip kuantum.

Ide mengenai komputer kuantum ini berasal dari beberapa fisikawan antara lain Charles H. Bennett dari IBM, Paul A. Benioff dari Argonne National Laboratory, Illinois, David Deutsch dari University of Oxford, dan Richard P. Feynman dari California Institute of Technology (Caltech).

Pada awalnya Feynman mengemukakan idenya mengenai sistem kuantum yang juga dapat melakukan proses penghitungan. Fenyman juga mengemukakan bahwa sistem ini bisa menjadi simulator bagi percobaan fisika kuantum.

Selanjutnya para ilmuwan mulai melakukan riset mengenai sistem kuantum tersebut, mereka juga berusaha untuk menemukan logika yang sesuai dengan sistem tersebut. Sampai saat ini telah dikemukaan dua algoritma baru yang bisa digunakan dalam sistem kuantum yaitu algoritma shor dan algoritma grover.

Walaupun komputer kuantum masih dalam pengembangan, telah dilakukan eksperimen dimana operasi komputasi kuantum dilakukan atas sejumlah kecil Qubit. Riset baik secara teoretis maupun praktik terus berlanjut dalam laju yang cepat, dan banyak pemerintah nasional dan agensi pendanaan militer mendukung riset komputer kuantum untuk pengembangannya baik untuk keperluan rakyat maupun masalah keamanan nasional seperti kriptoanalisis.

Telah dipercaya dengan sangat luas, bahwa apabila komputer kuantum dalam skala besar dapat dibuat, maka komputer tersebut dapat menyelesaikan sejumlah masalah lebih cepat daripada komputer biasa. Komputer kuantum berbeda dengan komputer DNA dan komputer klasik berbasis transistor, walaupun mungkin komputer jenis tersebut menggunakan prinsip kuantum mekanik. Sejumlah arsitektur komputasi seperti komputer optik walaupun menggunakan superposisi klasik dari gelombang elektromagnetik, namun tanpa sejumlah sumber kuantum mekanik yang spesifik seperti keterkaitan, maka tak dapat berpotensi memiliki kecepatan komputasi sebagaimana yang dimiliki oleh komputer kuantum.

Entanglement

Entanglement merupakan keadaan dimana dua atom yang berbeda berhubungan sedemikian hingga satu atom mewarisi sifat atom pasangannya. “Entanglement adalah esensi komputasi kuantum karena ini adalah jalinan kualitas yang berhubungan dengan lebih banyak informasi dalam bit kuantum dibanding dengan bit komputing klasik,” demikian Andrew Berkley, salah satu peneliti.

Para ahli fisika dari University of Maryland telah satu langkah lebih dekat ke komputer kuantum dengan mendemonstrasikan eksistensi entanglement antara dua gurdi kuantum, masing-masing diciptakan dengan tipe sirkuit padat yang dikenal sebagai persimpangan Josephson. Temuan terbaru ini mendekatkan jalan menuju komputer kuantum dan mengindikasikan bahwa persimpangan Josephson pada akhirnya dapat digunakan untuk membangun komputer supercanggih.

Pengoperasian Data Qubit

Proses komputasi dilakukan pada partikel ukuran nano yang memiliki sifat mekanika quantum, maka satuan unit informasi pada Komputer Quantum disebut quantum bit, atau qubit. Berbeda dengan bit biasa, nilai sebuah qubit bisa 0, 1, atau superposisi dari keduanya. State dimana qubit diukur adalah sebagai vektor atau bilangan kompleks. Sesuai tradisi dengan quantum states lain, digunakan notasi bra-ket untuk merepresentasikannya.

Pure qubit state adalah superposisi liner dari kedua state tersebut. Lebih jelasnya, sebuah pure qubit state dapat direpresentasikan oleh kombinasi linear dari state|0> dan state |1> : Dengan α dan β adalah amplitudo probabilitas yan dapat berupa angka kompleks. State space dari sebuah qubit secara geometri dapat direpresentasikan Bloch sphere

Bloch sphere adalah ruang 2 dimensi yang merupakan geometri untuk permukaan bola. Dibandingkan bit konvensional yang hanya dapat beradai di salah satu kutub, Qubit dapat berada dimana saja dalam permukaan bola. Untuk penerapan fisiknya, semua sistem 2 level, selama ukurannya cukup kecil untuk hukum mekanika quantum berlaku. Berbagai jenis implementasi fisik telah dikemukakan, contohnya antara lain: polarisasi cahaya, spin elektron, muatan listrik, dll.

Superposisi quantum adalah inti perbedaan antara qubit dengan bit biasa. Dalam keadaan superposisi, sebuah qubit akan bernilai |0> dan |1> pada saat bersamaan. Menurut interpretasi Copenhagen, bila dilakukan pengukuran terhadap qubit, maka hanya akan muncul satu state saja. State lainnya “kolaps” dalam arti hancur dan tidak mungkin diambil kembali.


Pemanfaatan sifat superposisi qubit ini adalah Paralellisme Quantum. Paralelisme Quantum muncul dari kemampuan quantum register untuk menyimpan superposisi dari base state. Maka setiap operasi pada register berjalan pada semua kemungkinan dari superposisi secara simultan. Karena jumlah state yang mungkin adalah 2n, dengn n adalah jumlah qubit pada quantum register, kita dapat melakukan pada komputer quantum satu kali operasi yang membutuh kan waktu eksponensial pada komputer konvensional. Kelemahan dari metode ini adalah, semakin besar base state yang bersuperposisi, semakin kecil kemungkinan hasil pengukuran dari nilai hasil pengukuran tersebut benar. Kelemahan ini membuat pararellisme quantum tidak berguna bila operasi dilakukan pada nilai yang spesifik. Namun kelemahan ini tidak begitu berpengaruh pada fungsi yang memperhitungkan nilai dari semua input, bukan hanya satu. Sebagaimana ditunjukkan pada Algoritma Shor.

Quantum Gates

Dalam komputasi kuantum dan khusus kuantum sirkuit model komputasi, gerbang kuantum (atau Gerbang logika kuantum) adalah rangkaian dasar kuantum yang beroperasi di sejumlah kecil qubits. Mereka adalah blok bangunan dari kuantum sirkuit, seperti gerbang logik klasik sirkuit digital konvensional.

Tidak seperti logika klasik pintu gerbang pada umumnya, logika kuantum bersifat reversibel. Namun, komputasi klasik hanya dapat dilakukan dengan menggunakan gerbang reversibel. Sebagai contoh, gerbang Toffoli reversibel dapat melaksanakan semua fungsi Boolean. Gerbang ini memiliki penyetaraan kuantum secara langsung, menampilkan bahwa sirkuit kuantum dapat melakukan semua operasi yang dilakukan oleh sirkuit klasik.


Gerbang logik kuantum yang diwakili oleh kesatuan matriks. Gerbang kuantum yang paling umum beroperasi pada ruang dari satu atau dua qubits, seperti Gerbang logika klasik umum beroperasi pada satu atau dua bit. Ini berarti bahwa sebagai matriks, gerbang kuantum dapat dijelaskan oleh 2 × 2 atau 4 × 4 kesatuan matriks.

Algoritma Shor

Algoritma Shor merupakan sebuah metode yang dikembangkan tahun 1994 oleh ilmuwan AT&T Peter Shor untuk menggunakan komputer kuantum yang futuristis untuk menemukan faktor-faktor dari sebuah bilangan. Bilangan-bilangan yang diperkalikan satu dengan yang lain  untuk memperoleh bilangan  asli.  Saat ini, pemfaktoran (factoring) sebuah bilangan besar masih terlalu sulit bagi komputer konvensional meskipun begitu mudah untuk  diverifikasi. Itulah sebabnya pemfaktoran bilangan besar ini banyak digunakan dalam metode kriptografi untuk melindungi data.

Implementasi Komputasi Kuantum

Pada 19 Nov 2013 Lockheed Martin, NASA dan Google semua memiliki satu misi yang sama yaitu mereka semua membuat komputer kuantum sendiri. Komputer kuantum ini adalah superkonduktor chip yang dirancang oleh sistem D – gelombang dan yang dibuat di NASA Jet Propulsion Laboratories.

NASA dan Google berbagi sebuah komputer kuantum untuk digunakan di Quantum Artificial Intelligence Lab menggunakan 512 qubit D -Wave Two yang akan digunakan untuk penelitian pembelajaran mesin yang membantu dalam menggunakan jaringan syaraf tiruan untuk mencari set data astronomi planet ekstrasurya dan untuk meningkatkan efisiensi searchs internet dengan menggunakan AI metaheuristik di search engine heuristical.

A.I. seperti metaheuristik dapat menyerupai masalah optimisasi global mirip dengan masalah klasik seperti pedagang keliling, koloni semut atau optimasi swarm, yang dapat menavigasi melalui database seperti labirin. Menggunakan partikel terjerat sebagai qubit, algoritma ini bisa dinavigasi jauh lebih cepat daripada komputer konvensional dan dengan lebih banyak variabel.


Penggunaan metaheuristik canggih pada fungsi heuristical lebih rendah dapat melihat simulasi komputer yang dapat memilih sub rutinitas tertentu pada komputer sendiri untuk memecahkan masalah dengan cara yang benar-benar cerdas . Dengan cara ini mesin akan jauh lebih mudah beradaptasi terhadap perubahan data indrawi dan akan mampu berfungsi dengan jauh lebih otomatisasi daripada yang mungkin dengan komputer normal.

Sumber :
http://en.wikipedia.org/wiki/Quantum_computing
http://id.wikipedia.org/wiki/Komputer_kuantum
https://nawieznet.wordpress.com/artikel/komputer-quantum/
http://chachados.blogspot.com/2013/05/komputasi-kuantum.html
http://seto.citravision.com/berita-45-pengantar-quantum-computation--algoritma-shor.html
http://www.sciencedaily.com/articles/q/quantum_entanglement.html
https://amoekinspirasi.wordpress.com/2014/05/15/pengertian-quantum-computing-dan-implementasinya/
http://quantumstudyclub.blogspot.com/2008/03/quantum-computer.html

Tidak ada komentar:

Posting Komentar